Better Living Through Gardening (Earth Day edition)

I need life around me.
And, I am not alone in this; hence, community gardens.

That a sense of well-being is enhanced by walking through a forest, working in a garden, or having pets around is not exactly revolutionary. Philosophers and poets throughout human history have recognized that nature is more than something to be contended with or tamed. Being connected to nature is an integral part of how we see our own lives and relate to the rest of the world. Physicians have also acknowledged that patients heal faster when convalescing in a garden or with a companion animal. Even prison systems have found that involving inmates in gardening reduces violence and rates of recidivism.

I have come across several lists of the benefits of gardening. Most touch on common themes of improved physical and mental health while emphasizing specific aspects. My favorite list so far is one posted a couple of years ago in the UAE’s The National. Not only is at an interesting and fairly comprehensive list, it also references studies associated with each of the included benefits.

Along with the better understood aspects of the physical benefits – exercise, sensory stimulation, fresh air – some intriguing potential benefits found in these lists are:

A sense of responsibility: Here is this living thing that is totally dependent on you for proper watering, feeding, and adequate sunlight (or “sunlight” for indoor growers). Along with learning facts and fascination with nature, this is probably the best reason for including some type of horticultural program in every school.

Engendering hope: People suffering PTSD or depression benefit tremendously from a sense of hope that comes from helping a well nurtured garden grow, amplify life, and literally see the fruits of their labors.

Improved focus and attention span: This is one I can relate to. I fuss in the garden and few details escape me when I’m examining leaf health, making sure climbing plants are secure, or pinching back herbs. The idea is that this kind of primitive activity resets fundamental brain function which translates to better performance in a distracting modern environment.

Response with no judgment: Plants don’t care who takes care of them. They are not irrational nor do they harass a gardener with snide comments about the color of the border fencing or the type of cuisine they will become. They just grow.

A sense of accomplishment and reward: Vegetables that you grow in your own garden ALWAYS taste better than….anything. Especially if you also get some great harvest photos to post on Instagram.

Relieving Seasonal Affective Disorder (SAD): Gardening during winter to counter some of the impact of SAD has historically been a remedy only available to those fortunate enough to have access to a heated greenhouse. But with the advent of hydroponics, and now the pPod™, off-season gardening is more accessible, even on a balcony in New York City. I love hearing “Can you get some thyme and parsley for the chicken?” from my wife when it is 15 degrees out. We also get to start our summer plants in February in the pPod.

Articles on the benefits of gardening and horticultural therapy tend to have a certain angle, or even bias, depending on the author’s intent, area of expertise and the interest area of the publication (academic and government research papers obviously focus on one particular subject). Looking at the array of points made by these authors, it is clear that the ways in which someone is positively affected by gardening depends on their personality and specific needs. For example, one article emphasizes solitary gardening as a way to relieve the stress of dealing with people at work while another promotes the health benefits of participating in a community garden. Some authors focus on physical fitness and the chores required in maintaining a garden, while others write about quiet times in natural settings for spiritual renewal.

Along with blogs and magazine articles that provide insightful overviews of the benefits of gardening, more detailed tangible information can be learned by exploring research papers found through medical journals and government agencies such as the NIH. What you may discover is that definitive clinical evidence of the psychological benefits of horticultural therapy has been elusive, as most studies are qualitative. However, the number of studies that identify direct, quantitative physical and psychological effects is increasing, adding to a growing body of research pointing to health benefits of gardening and the risks associated with being deprived of contact with nature. Recent studies have even shown a clear link between horticultural therapy and a reduction in chemical stress indicators.

The engineer in me really wants these kinds of quantitative results to show proof that working in a garden x number of hours each week improves work performance or ailment recovery by x%. Nobody could argue with that. The businessman in me knows that such hard evidence would be a powerful marketing tool. But then the gardener in me says “That’s nice. I just know that I benefit tremendously from watching to see which of my heirloom tomatoes will look like a duck.” The point is that anyone will feel better growing something, anything, especially if they can eat it.

Just as solitary time in the garden serves a specific therapeutic purpose, sharing that experience with others can be more valuable. Not only do the benefits experienced by each gardener get aggregated, but the garden itself takes on a greater significance in how it affects the local community and surrounding areas. Health improvements associated with community garden programs are now being recognized such that the value of expanding these programs is being taken seriously by many local governments. Community gardens have proven to be powerful tools for improving distressed neighborhoods in many urban areas such as Detroit, empowering their residents to have a positive impact on the city as a whole. In response, cities have revised land-use policies and invested in community gardens.

As we celebrate Earth Day, we are reminded to pay attention to the complexity of every human and seriously consider how all of our interactions with nature impact our individual and communal lives, whether or not we fully realize or understand it.

DIY vs Commercial Farming

Gardening is a 7 billion dollar industry in the US with about half of that accounting for the cultivation of stuff someone would like to eat. If this produce is then sold, is it still just “gardening”?

We know a lot about the purchase of seed, fertilizer, soil mixes, starter plants, tools, and such, but unlike large-scale corporate farming, we know very little about various distributions of produce that have always existed downstream of garden supply sales. I don’t mean the ridiculously huge zucchinis that get left on neighbors’ porches every summer because what else are you going to do with them. For every ton of baseball bat sized squashes grown each year, approximately 4 loaves of zucchini bread are actually baked. The rest becomes compost.

I am referring to people who maintain a booth at a farmers’ market or even in front of their homes selling fruit, vegetables, and herbs that are grown on a small plot out back or in a community garden. And now we should include micro and leafy greens grown hydroponically in a grow room. Even when these sales are more formal than cash or barter transactions, they are not clearly represented in major industry surveys.

Sometimes a thing becomes something else simply by changing its name. If Joe grows fantastic Nardello peppers on a ¼ acre of his back yard and eats them all himself, you would be right to say that he is an avid gardener and enjoys eating what he grows. But if he sells all his Nardello peppers at a local weekend market, he becomes Farmer Joe, or more accurately, Micro-Farmer Joe. The peppers don’t care who eats them; nor do the garden supply companies as they are pretty much only care about the potential for another ¼ acre of land being used to consume their products.

The ones who do care that Gardener Joe became Micro-Farmer Joe are local chefs and foodies who are ecstatic that they now have a source of fresh Nardello peppers that are otherwise not available at their local grocery stores. And when everyone gets bored with Nardello peppers and begins clamoring for Corno di Toro peppers, Micro-Farmer Joe picks up on this trend shift and starts growing Corno di Toro peppers, JUST LIKE BIG-TIME COMMERCIAL FARMERS.

As I mentioned in an earlier post, New York City requires anyone producing and then selling any kind of food products to have one or more types of license or permit to do so legally, even if you just want to sell your terrace grown tomatoes at a vegetable stand on the corner. Local Law 2018/046, enacted in January aims to simplify licensing for gardeners-turned-micro-farmers and we have every reason to believe it will be an effective program. Several other cities in the US have already established ordinances that specifically encourage micro-farming by streamlining land-use regulations, processing requirements, and sales permits.

And unlike large-scale commercial farmers, it is very easy for Micro-Farmer Joe to go back to being Gardener Joe and just grow what he, and maybe some of his friends and neighbors, will eat without money ever being involved (except maybe a bet on who can grow the ugliest gourd). That would be too bad for the more creative chefs in town who love having a regular supply of fresh and unusual ingredients. But then another micro-farmer will pick up their business.

This is the beauty of distributed agriculture. The production of much of the produce we buy, or would buy if it was available, can scale very differently than staple crops like wheat and corn. A great example is with herbs: a micro-farmer can justify offering loose herbs or small bundles of a greater variety than larger operations which have to ship bigger bundles or expensively packaged herbs to cover production costs that are only suited to high volume operations. I hate having to buy mint either by the fistful or in a couple of overpriced tiny plastic packs when I just want enough to make a few mojitos. A micro-farmer growing several different herbs and harvesting them with little or no support labor can more easily afford to customize quantities and not worry about how they will ship.

At first glance, micro-farming can look like little more than a new label on an old practice, but hydroponics, advanced greenhouse equipment, and serious urban agriculture efforts dramatically expanded its potential and continue to change how many of us buy produce – or grow our own food.

Ponix MicroAg pPods™ will provide an ideal intermediate environment for both gardeners and micro-farmers. We get consistently positive responses from people who want pPods for growing herbs on balconies in New York, starting plants before the end of winter everywhere from Boston to Peoria to Sacramento, establishing more mature plants for micro-farms in Atlanta, growing micro-greens on a deck in Seattle, or keeping a favorite patio plant safe through frosty winter nights in North Carolina. We are excited about providing a versatile option for growing all kinds of plants for multiple purposes and look forward to what Micro-Farmer Joe grows in his pPods!

E Pluribus Unum Food Supply

Let’s consider disruptive innovations. Examples that justifiably get immediate attention are smartphones, streaming video, LED lighting, digital photography, and pretty much anything else digital or involving the internet. But a deep dive into the history of farming is often needed to appreciate the impact of disruptive innovations in agriculture. Here are a few historical examples that completely changed how we grow and get our food and are often taken for granted in the 21st century:

  • Jethro Tull’s seed drill was instrumental in launching the British Agricultural Revolution of the 18th century
  • combine harvesters eliminated multiple steps in processing grain after harvesting beginning in the late 19th century
  • industrial refrigeration revolutionized food storage in the early 20th century
  • tractors eliminated the use of horses, mules, and oxen to pull field working equipment by the mid-20th century
  • no-till farming has displaced traditional tilling for many types of crops over the past 40 years and has had a huge impact on soil preservation and other ecological improvements

And now, we can add controlled environment agriculture (CEA), which includes hydroponic and vertical farming.

Every once in a while, I come across an article emphasizing the disruptive significance of CEA, particularly indoor vertical farming, implying that it could someday replace traditional farming with even cereal crops being grown indoors. A few months ago, a Forbes article quoted an up and coming hydroponics CEA company on the west coast as saying “Research shows that hydroponic farming could well be the future of global agriculture, combining the benefits of local outdoor organic farming with the high yields of large-scale agricultural production.” The impression that this could apply to all farming gets reinforced by news of projects where crops such as rice are grown in modern multi-use buildings.

Is it theoretically possible that all of our food could be grown indoors? Yes. Is it optimal? Probably not (at least not for the foreseeable future on Earth – farming on Mars is another story). We can gage that opinion against the limits of farming technology over the years. Let’s take a closer look at that select list of historical disruptive agricultural innovations:

  • Seed drills & combines: only apply to annual (or semi-annual) plants grown from seed in rows. Granted, this includes staple crops such as corn, wheat, and barley that comprise the bulk of our farmland, but not to other essential food sources like fruit trees and vines. Although, several types of orchard harvesting machines are in use and continually being invented.
  • Refrigeration is only required for fresh produce and meat.
  • No-till farming does not work for root vegetables.
  • Tractors are not necessarily practical for greenhouses – a rapidly growing farming segment – or micro-farms.

Ah, yes. Micro-farms. At first glance, they seem to be mere gardens for which the word “farm” is a bit grandiose. Yet, what if micro-farms were utilized strategically such that their combined effect was to reliably provide specific types of crops, such as herbs and micro-volume specialty produce, to local customers at a lower price and higher quality than “real” farms? This is a concept that is taking shape in many cities where local markets for produce grown in local lots or on building rooftops and terraces is being created.  Organizations such as Urban Farming are working to transform what has been a type of business sustained largely by esthetics and community support into a serious form of distributed agriculture that will only enhance the social and esthetic attraction of produce from local soil. Included in a distributed agriculture system are most types of CEA, including greenhouses and hydroponic farms.

Distributed agriculture is analogous to distributed energy where localized energy generation is beginning to aggregate to the extent that some utilities are now seeing it as a very useful supplement during certain peak and valley power demand times. And how that distributed energy gets used is also part of the strategy. For example, electricity demand is often highest during the day when solar PV panels can collect the most energy. The power from PV panels is most efficiently used directly as DC electricity to do things like charge phones and power PC’s and apply unused electricity to battery banks for those same applications during the night.

Or consider that traditional windmills in the U.S. were built, and are still sold, to pump water for irrigation and watering livestock without any electricity being involved.

Utilities can plan for these types of independent, supplementary, distributed power sources when estimating how much electricity is needed from local and regional power plants.

Hydroponics, micro-farming, and greenhouse innovations are beginning to disrupt the agricultural industry in the same way and will continue to do so until an economic equilibrium is reached where costs are minimized and quality meets expectations for each farming method. What will that look like? At this point, a pretty good guess is that most grain and orchard crops will continue on their current path because of the high volume and low density of these crops; but vegetables and fruit that can be grown in high density or vertically year-round will become standard CEA crops, with many of them also being grown in micro-farms. Ponix MicroAg pPods™ will fill an integral niche and support a broad spectrum of these industries. Today, distributed farming is best suited to urban centers, but once it becomes an established business model, there is no reason it would not be adopted nearly everywhere, just as solar PV panels are becoming ubiquitous.

Each farming technique and technology has a place in food production – it’s just a matter of figuring out which is best for each product in each market. Vertical farming is destined to play a critical role for certain applications just as advanced greenhousing will continue to establish itself as a source for year-round produce, new equipment and techniques will improve efficiencies in farming field and orchard crops, and micro-farming will fill its niche of supplying low-volume and specialty produce for local markets. The next time you go to the grocery store, think about the increasing diversity of growing methods for all the produce you see.

And as you are checking out, remember:
from many farm sources, one cartful of food.

Urban Farming and “The Government”

Thursday of last week, I had the pleasure of attending the New York City Council Committee on Land Use public hearing for a bill to “develop a comprehensive urban agriculture plan,” introduced by Rafael Espinal, City Council Member from Brooklyn. (details of the bill can be found at ) The bill is light on specifics, being more of a requirement for the Department of City Planning (DCP) to come up with a plan that would include, at minimum, the following 9 items:

  1. catalog of existing and potential urban agriculture spaces
  2. classification and prioritization of urban agriculture uses
  3. identification of potential policies to promote agricultural production within the city
  4. identification of zoning rules and building codes that merit reconsideration to promote urban agriculture
  5. integration of urban agriculture into the city’s conservation and resiliency plans
  6. estimate of direct and indirect job creation and impacts from urban agriculture production
  7. determination of the feasibility of creating an Office of Urban Agriculture
  8. expansion of the availability of healthy food in low-income neighborhoods
  9. youth development and education with regard to local food production

The hearing included testimonies initially by two DCP representatives and then by a number of residents involved in urban farming and community gardening in the city.

In their testimony, the DCP insisted that this should have been handled as a city management issue and that legislation was not necessary as they claim that current laws already cover everything mentioned in the bill.  Council Member Espinal was essentially scolded for not consulting with them before introducing the bill. Land Use Committee Chairman David Greenfield was less than satisfied with this response and supported Espinal’s claim that they had, in fact, contacted DCP a number of times regarding specific projects but that permits were always issued ad hoc instead of coming from a dedicated DCP policy. A lively debate ensued in which Chairman Greenfield doggedly questioned the DCP representative about which specific codes and regulations applied to urban farming. He, along with Espinal (and everyone else present) just wanted a clear set of guidelines for what they should, could, and couldn’t do to grow vegetables and possibly sell them to others in the city – much like they have in Boston.

Greenfield brought the whole issue home with an anecdote about his 10-year-old son wanting his school to put what I assume would be a substantial container garden on the roof of their school building. But this requires the school and/or its students to invest way more time and energy in learning about the city’s building and food distribution codes than they were willing to take on. Couldn’t they just get some guidance from the administration to make this process less intimidating? The DCP representative was quick to disclaim DCP’s responsibility or capacity to provide such guidelines. The school or the students would have to learn all possible pertinent codes and rules from all of the various NYC departments/offices on their own. Greenfield was incredulous at this expectation. The DCP representative was not apologetic. She didn’t exactly expand her fan base during this exchange.

To cynics, this must sound like just another example of typically hyper-bureaucratic big government making it impossible for a resident to grow a few tomatoes and sell them to their neighbors. And if all that existed in NYC government was this bulky administration with an insensitive by-the-book DCP, then governmental nihilism might be understandable. But that is not the form of government used to keep NYC running, as we got to experience that day. This poorly understood topic needed a broader conversation and that’s what we were getting.

Urban agriculture is primarily a grass-roots movement (pun intended). Right now these are projects and businesses with a very local operational impact but a city-wide cultural opportunity. Involvement by local Representatives (i.e. City Council Members) is a natural in this case. This is exactly why they exist and their job is to make sure the administration is properly serving their constituents, so it was heartening to see them so engaged.

The rest of the hearing focused on how and why this bill should be passed. Arguments for its benefits and requirements to succeed were presented and some of the testimony pointed to Boston’s Urban Agriculture Rezoning Initiative, Article 89 ( ), as an example of the type of comprehensive approach NYC should take. As well, a number of other major U.S. cities have already taken measures ranging from policies encouraging the development of urban farms to comprehensive zoning rules to allow mixed-use food production on and around buildings ( ). Each city approaches urban agriculture a little differently to suit their individual size, climate, economy, demographics, etc.

At first glance, NYC would seem to be lagging behind these others, and in many ways it is. But again, it has characteristics that differentiate it in important ways. From my experience over many years of providing green roof consulting and building energy analysis for projects in NYC, key features include:

Size and density – This is the country’s largest and most densely populated city. Part of the reason for the high density is that most of it is bound by water with Queens and The Bronx being the only boroughs with city limits bordering other towns where there might otherwise be some peripheral open areas for expansion or green spaces as in Chicago. This means that zoning and land-use rules and allowances are particularly sensitive issues.

Government – New York is the only city made up of multiple counties; each borough is its own county. This is mostly organizational and will have little effect on city-wide zoning allowances for urban agriculture. However, it could impact how each borough approaches approval or opposition to it. Manhattan and Staten Island probably each have very different views on what an urban agriculture policy should look like. The point is that NYC has a much bigger and more complicated government than any other U.S. city.

Architecture – NYC has a long history of utilizing its rooftops, sometimes in dramatic fashion ( ). If you walk through Manahattan and look up, you will probably see trees growing on the edges of roofs and terraces. So the idea of expanding a container garden into a micro-farm should not be foreign to the Dept of Buildings. But it also means they have many decades of experience expanding codes and the bureaucracy associated with enforcing rules that, for some reason, seem stricter about lightweight greenhouse construction than heavy tree containers.

New York City can work through these complexities from 2 different directions:

Administrative initiatives – DCP can ask for funding to work with those in the food industry, including traditional producers, restaurants, grocers, and urban farmers along with other city departments and the Mayor’s Office to craft a dynamic policy governing pertinent laws and create a set of guidelines for those involved in urban agriculture.

Legislation – City Council can pass laws requiring DCP and other city agencies to take specific action and provide the necessary budget.

From my observations at the Land Use Committee hearing, the latter is going to be the more likely path as evidenced by several witnesses who expressed a common frustration that the administration is simply not taking this issue seriously. The urban farmers and their Council Members want more than just a zoning or rule change here and there, but actual planning and a comprehensive policy. The administration needs to be making compliance easier, not more difficult, for anyone wanting to get involved in urban agriculture.

What should not be lost in this discussion is that the administration does have some legitimate concerns that must be addressed in the guidelines. For example, DCP pointed out that it is unlawful for food grown on one residential lot to be sold on another lot – it then becomes a commercial entity subject to commercial zoning and regulation. This may seem onerous for many micro-farmers, but right now it is how the city controls health and safety when selling food products. Determining acceptable Local Law variants to everyone’s satisfaction will not be easy. Again, it’s a big city and exceptions to these rules really can add to the bureaucracy.

For a city as large and complex as New York, the realization of an effective urban agriculture plan will depend on it being handled carefully and reasonably. I believe that if this urban agriculture plan is created successfully, the scope will be such that other cities, and even states, will do well to reference it along with urban agriculture initiatives in other cities.

The Challenges of the Great Outdoors

The view from our 35th floor apartment balcony in Manhattan was magnificent. We loved watching the most amazing sunsets and dramatic storms approach from the west. Well, except that the storms would pretty much trash our tomatoes, dill, and whatever else grew taller than the balcony wall and would wash out sprouting plants if the rain was particularly heavy. Even when the weather was good, the fairly constant wind drew an impressive amount of water from all the plants.

Our next apartment was on a 4th floor with a spacious balcony that was quite sheltered, so we didn’t have to worry about storms damaging our plants. This time the assaults came from other directions in the forms of insects (and not enough of the good kind), airborne fungi, and limited sun exposure. Our pPod™ prototypes shifted from serving as plant shelters to rather effective plant hospitals when the damage began to take a toll.

Sounds like a lot of hassle just to have some herbs and a few vegetables growing outside. My cousin began to think the same thing when I set him up with a container garden and started giving him advice on how to deal with mildew and white flies. With his response of “You’re taking the fun out of gardening!” I knew that it was time to let nature take its course and, fortunately, it was reasonably kind to my cousin’s neighborhood this year.

So imagine your very livelihood being dependent on an entire field of crops surviving hailstorms, plagues, and pestilence. Seed and soil quality can be reasonably well established at the beginning of a growing season, but once sowing is done, nature’s potential onslaught and your ability to respond turn farming into a bit of a gamble. After many generations of farming in the U.S., the result is a federally subsidized $15 billion crop insurance industry and an entire section of our federal tax code being dedicated to the unique risk management of agribusinesses.

Everyone who tries to grow any type of food or flower outdoors has to deal with some aspect of the complexity of nature. Healthy plants can handle the challenges for which they are adapted, but only to a certain extent. Of course, as with humans, a qualitative stress such as the introduction of a new disease can be devastating. But quite often, the problem is quantitative, such as too much or too little rain. Even with insects and micro-organisms, the balance between the harmful and beneficial ones varies from year to year, sometimes past a tipping point. And that’s without human interference.

Interfering with nature is a tricky business. Unless we want to revert to being strictly hunters and gatherers of our food, modifying a patch of land for cultivation is our only path for survival. I use the word “path” because the transition from simply planting and harvesting a crop to managing a modern farm continues to evolve.

Bronze Age hedges, Cornwall (

Irrigation was one of the first manipulative innovations which eliminated the risk of drought, and walls were utilized early on to control animal and human traffic through fields, orchards, and gardens. High hedges and tree rows were also used as wind blocks. Later, chemicals were applied to additionally inhibit the flow of insects and effects of airborne seeds, fungi, bacteria, etc.

Of these advancements, the one that has led to the greatest control of a growth environment is that of the enclosure. From stone walls to greenhouses, concepts for putting a physical barrier between a plant and whatever might keep it from thriving have tracked engineering advancements throughout history. Some of the earliest accounts from the Roman Empire and Korean Joseon Dynasty describe what were essentially barns with translucent oil cloth stretched between joists in place of the roof and then closed up during particularly cold weather.

        Kew Gardens “Palm House” greenhouse

As plate glass windows were developed in Western Europe, greenhouses took a leap closer to modern CEA structures.

Full greenhouse enclosures not only allowed temperature control, the physical barrier minimized the need for chemical weapons in the battle against pests and invasive weeds. Focus could then be on maximizing plant health and product quality.

Today, we have the technology to completely control every aspect of a plant’s interaction with the rest of the world, resulting in higher yields with higher quality and less waste. But just because you can do something, it doesn’t mean you should. Currently, the business case for clean-room-type hydroponics is difficult to justify for much more than leafy and micro greens. Even conventional greenhouses are not cost effective for orchards or grain crops in the vast majority of situations. Many people are also of the opinion that an overly sanitized farming process removes desirable flavor from vegetables. I have to confess that I prefer field peppers to greenhouse peppers if they’re not too beat up.

I believe that we are at the point where the real challenge is no longer in figuring out how to control agricultural environments, but rather in deciding the most intelligent way to approach each situation. Commercial farmers are already grasping how to assess the risks and rewards of adopting and investing in CEA methods. Urban farmers and other micro-farmers are learning this as well, though with a different set of constraints and unknowns.
More on the details of CEA business strategies coming up.


Filling a Big Gap

I’m walking into the garden center at Home Depot and the first thing I see is 2 long rows of pots and planters in dozens of different styles and sizes. Everything from small plastic containers to beautifully glazed 50 gallon planters. These hundreds of plant containers are bought by nearly as many people for their home growing each month.

And they are planting more than just flowers. At an increasing rate, people are growing their own herbs and small vegetables, according to the latest National Gardening Survey. This survey supports other reports indicating that nearly 20 million Americans have active indoor or outdoor container gardens, including as many as 3 million who are trying some type of hydroponics.

Unfortunately, these surveys do not address how or if the outdoor container-grown plants are protected from the elements, i.e. storms, wind, bugs, etc.  You can buy a small greenhouse at Home Depot but it will probably not fit on a typical balcony, or be appropriate for a terrace, deck or rooftop.

I assume you are familiar with greenhouses – specialized structures with glass walls (typically now clear plastic panels) designed to let in as much sunlight as possible and then hold in heat when needed or vent the heat during warm weather. To a great extent, a greenhouse is a managed environment for growing all kinds of plants and one of the oldest forms of controlled environment agriculture (CEA).

However, the environment in a greenhouse is not necessarily completely controlled unless it also has air conditioning, supplementary heat, artificial sunlight (grow lights), circulation fans, and humidity control. Most serious commercial greenhouses have these features where and when they are necessary. Going even further with CEA, hydroponics techniques control growth media as well by replacing soil with very specific exposure to air and nutrient-rich water. All of these concepts have found their way into technologies available to individual consumers as well as commercial markets.

Commercial farmers also have use for very simple plastic film coverings with no additional environment control. This is often referred to as “modified environment agriculture” (MEA) since they have a limited effect on light, temperature, and humidity. Some overlap exists between what is considered CEA and what gets called MEA, so a bit of latitude in terminology may be in order when talking about a plant enclosure that incorporates partial control of its environment.


Now, looking at these two industries – home gardening and commercial CEA/MEA – what is missing is a controlled-environment outdoor plant enclosure small enough to fit on a balcony, yet also expandable to help commercial growers who want a compact version of their CEA greenhouses for starting plants and enhancing low-profile plant growth. This could be seen as a niche market, but a pretty big niche that includes:

  • Home growers in cities, suburbs, and even rural areas
  • Restaurants and grocery stores capable of growing their own produce and herbs on their rooftops or terraces
  • Micro-farmers and urban farmers
  • Specialty and research farms
  • Schools, hospitals, and other facilities where people pay attention to food quality and education

At Ponix MicroAg, our goal is to become a major CEA resource for all of these people and businesses as we bring pPod™ compact enclosures and complementary products and services to these markets in the near future.

To learn more about Ponix MicroAg, our initial design, the pPod, and other developments we are working on, visit our website at .

Thanks for checking in!


Here we go…

Welcome to the inaugural blog post for Ponix MicroAg!

We hope you find the discussions here helpful and interesting. Controlled environment agriculture (CEA) is a rapidly expanding segment of the farming industry and it provides a technical foundation for DIY hydroponics and other controlled environment home gardening. Considering all the different kinds of people growing a wide range of plants in every imaginable type of location, this exploration will cover a lot of territory.

Post topics will range from Ponix MicroAg products and company information to technical overviews of common industry issues to the social impacts of how and where we grow food, herbs, and decorative plants. I’m looking forward to seeing where the conversation takes us and getting more insights from your comments so that we can all gain a greater understanding of new ways to grow food in the 21st century.

Thanks for checking in!



Lit pPod prototypes #5 & #6