The Challenges of the Great Outdoors

The view from our 35th floor apartment balcony in Manhattan was magnificent. We loved watching the most amazing sunsets and dramatic storms approach from the west. Well, except that the storms would pretty much trash our tomatoes, dill, and whatever else grew taller than the balcony wall and would wash out sprouting plants if the rain was particularly heavy. Even when the weather was good, the fairly constant wind drew an impressive amount of water from all the plants.

Our next apartment was on a 4th floor with a spacious balcony that was quite sheltered, so we didn’t have to worry about storms damaging our plants. This time the assaults came from other directions in the forms of insects (and not enough of the good kind), airborne fungi, and limited sun exposure. Our pPod™ prototypes shifted from serving as plant shelters to rather effective plant hospitals when the damage began to take a toll.

Sounds like a lot of hassle just to have some herbs and a few vegetables growing outside. My cousin began to think the same thing when I set him up with a container garden and started giving him advice on how to deal with mildew and white flies. With his response of “You’re taking the fun out of gardening!” I knew that it was time to let nature take its course and, fortunately, it was reasonably kind to my cousin’s neighborhood this year.

So imagine your very livelihood being dependent on an entire field of crops surviving hailstorms, plagues, and pestilence. Seed and soil quality can be reasonably well established at the beginning of a growing season, but once sowing is done, nature’s potential onslaught and your ability to respond turn farming into a bit of a gamble. After many generations of farming in the U.S., the result is a federally subsidized $15 billion crop insurance industry and an entire section of our federal tax code being dedicated to the unique risk management of agribusinesses.

Everyone who tries to grow any type of food or flower outdoors has to deal with some aspect of the complexity of nature. Healthy plants can handle the challenges for which they are adapted, but only to a certain extent. Of course, as with humans, a qualitative stress such as the introduction of a new disease can be devastating. But quite often, the problem is quantitative, such as too much or too little rain. Even with insects and micro-organisms, the balance between the harmful and beneficial ones varies from year to year, sometimes past a tipping point. And that’s without human interference.

Interfering with nature is a tricky business. Unless we want to revert to being strictly hunters and gatherers of our food, modifying a patch of land for cultivation is our only path for survival. I use the word “path” because the transition from simply planting and harvesting a crop to managing a modern farm continues to evolve.

Bronze Age hedges, Cornwall (

Irrigation was one of the first manipulative innovations which eliminated the risk of drought, and walls were utilized early on to control animal and human traffic through fields, orchards, and gardens. High hedges and tree rows were also used as wind blocks. Later, chemicals were applied to additionally inhibit the flow of insects and effects of airborne seeds, fungi, bacteria, etc.

Of these advancements, the one that has led to the greatest control of a growth environment is that of the enclosure. From stone walls to greenhouses, concepts for putting a physical barrier between a plant and whatever might keep it from thriving have tracked engineering advancements throughout history. Some of the earliest accounts from the Roman Empire and Korean Joseon Dynasty describe what were essentially barns with translucent oil cloth stretched between joists in place of the roof and then closed up during particularly cold weather.

        Kew Gardens “Palm House” greenhouse

As plate glass windows were developed in Western Europe, greenhouses took a leap closer to modern CEA structures.

Full greenhouse enclosures not only allowed temperature control, the physical barrier minimized the need for chemical weapons in the battle against pests and invasive weeds. Focus could then be on maximizing plant health and product quality.

Today, we have the technology to completely control every aspect of a plant’s interaction with the rest of the world, resulting in higher yields with higher quality and less waste. But just because you can do something, it doesn’t mean you should. Currently, the business case for clean-room-type hydroponics is difficult to justify for much more than leafy and micro greens. Even conventional greenhouses are not cost effective for orchards or grain crops in the vast majority of situations. Many people are also of the opinion that an overly sanitized farming process removes desirable flavor from vegetables. I have to confess that I prefer field peppers to greenhouse peppers if they’re not too beat up.

I believe that we are at the point where the real challenge is no longer in figuring out how to control agricultural environments, but rather in deciding the most intelligent way to approach each situation. Commercial farmers are already grasping how to assess the risks and rewards of adopting and investing in CEA methods. Urban farmers and other micro-farmers are learning this as well, though with a different set of constraints and unknowns.
More on the details of CEA business strategies coming up.